
COMPUTATION CENTER

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

CHAPEL H I U , NORTH CAROLINA

;kS&h*nLA

RESEARCH STUDY TO DEVELOP METHODS FOR SOLVING PROBLEMS ASSOCIATED
b WITH SPACE VEHICLES

--La.-- - n n ,. - A n n

BET!CY GAIL WOODWARD

Control Number: 1-5-75-00105-01 (1F)
1-5-75-00105-01 S1 (1F)

MONTHLY PROGRESS REPOW, CONTRACT NO. NAS8-20106

FEBRUARY 22, 1966

PREPARED FOR GEORGE C . MARSEALL SPACE FLIGHT CENTER, NASA
" T S V I L L E , ALABAMA

c

I. INTRODUCTION

The need for algebraic a h p l i f i c a t i o n by computer was realized

when the output from an algebraic d i f fe ren t ia t ion program became

unmanageable. Algebraic stringa, when different ia ted, can become

extremely long and d i f f i c u l t t o evaluate due to uncollected terms ,

and comaon factors. Investigations of methods to simplify alge- ’
braic s t r inga w e r e in order. Manipulating a f a i r l y short algebraic

mtring by hand is f a i r l y simple since a person can get a global

view of the s t r ing and detennine which algebraic laws need t o be

applied. A8 the string gets longer, the manipulations become

tedioum and the chance of error increaaem. A machine cannot con-

currently look a t the e n t i r e s t r ing but only a t one character a t a

t i m e . Therefore the algori thm muat scan the s t r ing i n a manner

tha t placer the individual characters i n context i n order t o apply

the algebraic laws needed for aimplification. The application of

the d is t r ibu t ive law to the etring to get it in a factored or more

highly parentheaited form with fewer operations t o do i n evaluating

it, and the grouping and deleting of l i ke elements when posaible,

were the i n i t i a l goalm. But th ia does not necessarily r e su l t i n

the simplest form of an expression.

siiplert form of an erpresaion is aubjtctive.

expreasion and the way it i a t o be uaed.

ed or l eas highly parenthesiaed form i a deairable.

The question of what is the

It depends on the

In some caaes the expand-

This requires

L

an algorithm t o multiply o u t parenthesized expressions and expand

powers of functions.

t ions$ it is somathies desirable t o express the product of trigono-

lnctric functions as the own or difference of other t r i g o n m t r i c

functions.

tions. Which in turn required an additional algorithm t o substi-

tute Cor trigonometric functions of negative argumants, one8 with

posit ive arguments, and t o subst i tute the values for trigonametric

functions with zero argument.

In a l l , the following nine algorithma were developed during the

course of the investigations on algebraic simplification. This

paper describes than in deta i l .

In expressions involving trigonometric func-

Thio requires an algorithm for trigonometric substi tu-

Algorithms for these were devaloped.

1. An automatic s iap l i f ica t ion algorithm which co l lec ts l i ke

terae and delete8 them when posrible

A factor ing algorithm which expresses sums of products of

terms as product8 of factors

A multiplication algorithm which expresses products of

factors as sums of products of terms and products of a

constant and a term as iterative sums of the terms

A groupinq algorithmwhich expresses the iterative sum of

a term as a product of a constant and the term, and which

expresses the iterative product of a term as a power of

t h i s term

A power elrpansion algorithm which expresses the power of a

term as an iterative product of the term

2.

3.

4.

5.

6. A trigonometric multiplication algorithm which expresses

the product of trigonometric functions as the sum of t r igo-

metric functions

7, A trigonometric s i g n algorithm which expresses trigon--

t r i c functions of negative arguments a s functions with

posit ive arguments

8 . A trigonometric value algorithm which SUbstitUte8 the

values for trigonometric functions of zero, and

9 . A zero-one simplification algorithm which simplifies ex-

pressions containing zero o r one.

A l l of the above algorithms were developed as subroutines to an

algorithm published by Ershov [l] (which w i l l henceforth i n t h i s

paper be referred t o 88 the Ershov a l g o r i t h) , which transforma a

parenthesized expression into a parenthesis f r ee form. Many of the

a l g o r i t h ~ depend on applying, within proper precedence levels,the

commutative and d is t r ibu t ive laws of algebra; so a way of looking

a t each character i n the context of its precedence level is needed.

The Ershov algorithm is a natural way t o do t h i s since it decom-

poses the s t r ing by precedence levels and maintains a current des-

cr ipt ion of these levels i n an L - l i s t (to be defined l a t e r) .

The chief aim of t h i r thesis is t o furnish and explain the

tools for algebraic simplification. It is eas i ly seen tha t some of

the a lgor i thm are inverses of others; therefore the choice o f d d c h

tools t o apply and the order i n which they a re applied is very im-

portant.

p l i f i ed and the desired resul t , the choice is l e f t up to the user .

Since both of these depend on t h e expression to be sim-

DEFINITIONS In this theclis, the representation follows pre-

cisely that defined in the article Hanson, Caviness, and Joseph

[2l. That definition is:

In this discussion, all expressions will be assumed to be
written in a simplified, algebraic compiler-like language,
This language is suemarited in the following table:

Operand or Operation Symbolic Representation
Addition
Subtract ion
Eful t ipl icat ion
Division
Exponentiation
Left Parenthesis
Right Parenthes is
Variable . . .
Constant 8

+
*
-
/

(
1
Any ... alphabetic charac-
ter except the symbol "P".

Remaining unassigned alpha-
betic characters and the
single decimal digits,
0-9.

P [x2 = xP2)

Tranocendental functions Represented by the string
lu.(cr)t'. Where '9UW'
represents any one of the
alphabetic strings in the
following list and "a" is
an expression (to be de-
fined later).

Function

Exponential
Logarithm
Sine
Cosine
Tangent
Cotangent
Secant
Cosecant

Arccorinc
Arec tangent
Ar cotangent
Arcsecant
Arccosecant
Hyperbolic Sine

kC8iUe

Name
EXP
LOG
SIN
cos
TAN
COT
SEC
csc
ARBIN
ARCCOS
ARCTAN
ARCCOT
ARCSEC
ARCCSC
SI"

.

Function (con't from previous
PWP)

Hyperbolic Cosine corn
Hyperbolic Tangent TA"
Hyperbolic Cotangent COlX

Hyperbolic Cosecant CSCH
Eyperbolic Arcsine ARSINE
Hyperbolic Arccosine ARCOSH
Eyperbolic Arcturgsnt ARTm
Hyperbol ic Ar cco tangen t
IlWn-cL .*,pL"alie AicracPnt
Hyperbolic Arccosecant ARCSCEI

Hyperbolic Secant SEW

ARCOTR
m m

For example, the expression ax2 + bx + sin cx would be
written as A * XP2 + B * X + SIN.(@X) in this compiler-
like language.

The class of expressions that can be [simplified) by
this program are explicitly defined as follows:

1. If r is a variable or a constant, then r is an expres-
s ion.

2. If r ia an expression, then (r), + r, and -I' are ex-
pressioru *

3. If r 8nd A are expressions, then lr + A, r - A, r * A
end I'/A are ucpreraions.

4, If I' and A are expressions, then rPA is an expression.
5. If r is an expression and l"ME1' represents one of the

allowable transcendental functions of the language,
then '"AB¶E". (r)" is an expression.

6. The above are the only allowable expressions.

By augmenting our input language with a set of symbol8
used only within the algorithms, [the process of putting
the input string into a parenthesia free form1 can be s h -
plified and facilitated. The symbol will be used as a
pseudo-operation, It will signify that the transcendental
function specified by "E, immediately preceding the sym-
bol has, a8 a functional argrrment, the quantity innedi-
ately following the I symbol. The symbol swill be used
to r resent the unary minus operation. The symbols
a n d 3 w i l l be w e d as left and right erpres8ion delimiters,
respectively, and will also be classed as operators.

All operators are assigned a precedence level. If p(e)
represents the precedence of an operator 6, then the prece-
dence levels are

.

id*) > 4 (PI > (a > b ("1 - b (/ I > b (-1

= b (+I > b <IC,- b (1) > b (t - 1 = b (-1) *

Normal parenthesis conventions are followed within ex-
pressions writ ten i n the input language. I f parentheses
are omi t ted from an expression, then the interpretat ion of
the expression is i n accordance with the precedence of the
operators.
before operators of lower precedence.
same precedence level w i l l be executed from l e f t t o r igh t
i n the order of their occurrence i n the expression.

Operators of higher precedence w i l l be executed
Operators 011 the

The Operands, which a re represented by the d i g i t s 0 through 9

and the alphabetic characters excluding E, can be any variables and/

or constants which a re a PDcmbers of some f i e l d K with the operators

+ and f . This r e s t r i c t ion must be imposed so tha t the comautative

laws of addition and multiplication, and the d is t r ibu t ive l a w can

be applied,

MOTATION In t h i s paper the following notation is used. hi and

R refer

index system where the index i is defined as follows:

t o an operand and an operator respectively i n a changing i

refers t o the current operand

n re fers t o the operand t o the l e f t of h i n the input a-1 U

s t r ing or below ha i n a l is t called the L - l i s t (t o be

defined l a t e r)

re fe rs t o the f i r s t operand above ha i n the L - l i s t

if h is in the L - l i s t , i f not,h is the l a s t

operand entered in the L - l i s t
a cytl

R re fers t o the current operator, or the operator t o the
B

l e f t of TI i n the input s t r ing
U

r e fe r s t o the n u t operator t o the l e f t of R

E tr ing

refers t o the operator most recently entered i n the

L- l i s t , the operator below havl i n the L - l i s t .

i n the %-l B

RWl

Each of the permissable operators has a precedence. The pre-

cedence of Ri is denoted by&@) and the precedence value is de-

noted by +value.

of operators is also used:

i

The following notation concerning the precedence

a &-lower operator refers t o an operator of lower precedence

a *higher operator re fers t o an operator of higher precedence

a &equal operator referr t o an operator of equal precedence.

ERSBOV ALGORITHM An algorithm published by Ershov [II) is used

a8 the ba8ic a l g o r i t h . It transform8 the input expression in to a

Polish pref ix or parenthesir-free form.

scanned from r i g h t t o left and each character is entered in to a

list which w i l l be referred to as the L - l i s t . The elements of t h i s

list are then transferred t o a table of t r i p l e s , where each t r i p l e

is composed of an operand, operator,operand.

referred to as the &matrix.

thesis-free form of the input expression. The algorithm scans the

expression character by ch8racter and operates on each i n the fol-

lowing way. When it encounters an operand ha, it enters ha i n the

L - l i s t and proceeds t o look a t the n u t character.

counters an operator, Rg, i t compares b(R) with b(Rwl).

The input expression is

This table sha l l be

This resul t ing M-matrix is the paren-

When it en-

I f
B

I

P(R) 2 b(Rwl), R is entered into the L - l i s t and the algorithm

proceeds t o look a t the next character i n the s t r ing. If b.(RB) <

+(Rpl), a t r i p l e comist ing of the last three elements i n the L-

list, haRg+&l, is removed from the L- l i s t and entered in to the

nlaatrix i n the f i r s t available row, say j.

represents t h i s t r i p l e and specif ies the row posit ion in the X-

mtrh, is theen en,terd i n t n t& 3-lfet i~ plsce nf the deleted

t r ip l e .

is pow the operator which preceedr R i n the L - l i s t , and proceed8

as above.

entered into the next available location on the L - l i s t . A l e f t

parenthesis causes everything i n the L - l i s t below the lowest cor-

responding r igh t parenthesir to be transferred t o the M-matrix as

sets of t r ip les .

B B

The operand, R , which
J

BCl
The algorithm then compares +(R) with b(R), where R e w1

J
When the algorithm encounters a r igh t parenthesis, it is

The r igh t parenthesis is then deleted fram the

L - l i r t and the algorithm proceeds t o the next character t o the l e f t

of the l e f t parenthesis and ignores the l e f t parenthesis. The

pseudo-operator,".", signals t ha t a function name is t o its l e f t .

The algorithm col lec ts the characters of t h i s name and t r e a t s the

name a s a single operand. When the left-hand end symbol, I f { - ", is

reached, the remainder of t h e L - l i s t elements is transferred t o the

M - m a t r i x resul t ing i n the parenthesis-free fom of the s t r ing.

ADDITIOHAL DEFINITIONS Now tha t the Ershov algorithm has been

discussed, a few additional def ini t ions tha t w i l l be needed can be

made.

be referred t o as a +-s t r ing (read t-s-string)

A s t r ing consisting of operand8 connected by"*'and/or"~will

and s imilar ly one

i n which the operands were connected by "+" and/or I'-'I w i l l be re-

ferred t o as a +-s t r ing (read plus-string).

enters *-string and +-strings as open backward chains:

The Ershov algorithm

the f i r s t

of the rows representing the s t r i n g contains the f i r s t two operands

of the s t r ing ; each succeeding row contains a chain pointer i n the

l e f t column which designates the preceding row.

the M - m a t r i x a *-string appears as follows:

a * b a * b / c * d

For example, i n

* Ri

Ri+l Ri / C

Ri+2 Ri+l * d

A +-string i n the M - m a t r i x has the following form:

a + d - c + d a + b * 1
Ri+l

Ri+2

Ri - c

Ri+l +

The group or rows which represent a *-string w i l l be referred t o as

a *-pattern and the group representing a +-string w i l l be referred

t o a s a +-pattern.

The following discussions of the developed algorithms are i n

o m t o three levels. Each lower level w i l l be a more detai led des-

cription. The f i r s t - l eve l portions, read consecutively, explain the

functions of the algorithms. The f i r s t and second levels , read to-

gether, explain the application of the mathematic relationships and

introduce the mechanisms of the algorithms. The th i rd leve l ex-

plains , with examples, the de ta i l s of the algorithms, including.

.

data representation, and serves as a guide for the program l i s t ings

wbich are separately available.

to designate a character of the string as that currently under in-

epection by the Ershav algorithm.

In the examplee an arrow i s used

11. - THE AUTOBIATIC SIWPLIFICATION ALGORIT" The automatic simplification

algorithm transforms the input s t r i ng in to a shorter equivalent

a t r ing, by applying the conmutative laws of addition and multiplica-

t ion, and the definit ion8 of ident i ty elanrants and inverses with

respect t o addition and multiplication.

Iat K be a f i e l d such that a l l the operand8 connected by "+",

, , or "/" i n the L - l i s t during the execution of the Ershov i i - l r r l * r l

algorithm are elarPants of K. The two operations in t h i s f i e l d are

For a l l a, b elements of K, a - b w i l l be considered I1 I1 + and "*".
t o be equivalent t o a + (-b) where -b is the additive inverse of b o

For a l l a , b, elements of K such tha t b is not zero, a/b w i l l be

considered t o be equivalent t o a*(l/b) where l / b is the multipli-

cat ive inverse of b. The ident i ty elements of K, with respect t o

1#+1* & t*+tg, are l t # l t and f t1 l l .

Since K is a f i e l d , the operations "+" and "*'* , are c-tatiwe.

The algorithm repeatedly applies the comnutative l a w of addition t o

the operands i n the L - l i s t which are connected by "+" and "-",
(t reat ing the operand tha t i s above the minus as the additive in-

verse of the operand) i n order t o group compBop operands, or t o

group an operand with i t s additive inverse i f it occurs.

When an operand, a, is grouped with i ts additive inverse, -a, the

t r i p l e , a-a, is replaced by 6. Similarly, the algorithm recursive-

l y applies the coprmutative law of multiplication t o the copp~~on

operands in the L - l i s t which are connected by "*" and "/".

an operand, a , is grouped w i t h i t s mult ipl icat ive inverse, the

When

t r i p l e , a/a, is replaced by 1.

and A*l = a are also applied.

Usually the ident i ty laws a-$ - a

SECOND LEVEL This algorithn is used as a subroutine within the

Ersbv algorithm. It is called as the Erahov algorithm enters an

operand into the L - l i s t .

Since a l l of the pennissable operators, with the exception of

the current operand, is bound by R or hex' e (~ l , are binary operators,

R

operator w i l l be denoted by $,.

t a t i ve l a w of addition or multiplication, i f e i t he r , can be applied,

is greater than

depending on which has the higher precedence. The binding
Btl'

I n order t o see whether the compu-

and &(RW1) are checked.

) i e less than b (R), neither of the laws can be

I f h (R e) or h(Rgel)

B !A*) or if h(RWl

applied.

I f b(ft) is a(+) and b(Rpl) is h(*), h is bounded by Rwl so

The value of 6(%) determines which corrmutative law

8 e

B cy

a(%) is b(*).

w i l l be applied. I f a(R) i s lesr than b(+) (i.e., when R "(" or

'It 'I), &(Re) is treated as 6(+), the lower of the two 4-values of

i n t e re s t .
The algorithm scans up the L - l i s t searching for another occur-

ance of h u n t i l a &-lowar operator than R,, is encountered.

&-higher operator w i l l not be encountered since the Ershov algorithm

would have previously caured the t r i p l e containing th ia operator

t o be t ranrferred to M-matrix. Therefore, t h i s scan checks only

the

of h

A
a

operands tha t could be coPmuted with h I f another occurance
CY

is found, it i s canwtted with the operands below it i n the a

L - l i s t so it w i l l be i n position for grouping or deletion.

-- THIRD LEVEL In t h i s level the algorithm w i l l be discussed i n

the following phases:

1. The entry into the algorithm

2.

3. 'Ihc "ccmmting" routine

4. Tha 'ideleti.ng" routine

The scan f o r c0Py)n expressions

1. TEXB ENTRY IX"0 TEE ALGORITHM

This algorithms is entered when an operand, h be it a variable

Two tags or a row reference, is about t o be entered i n the L - l i s t .

y and A, are set a0 follows, depending on the operator, Rg:

1.

2.2, 2.3)

i f f$ = +, (, or I - , set = + and A = - (see examples 2.1,

2. i f Rp - -
3. i f Re = *
4.

set y = - and A = -I- (see example 2.4)

set y = * and A = / (see example 2.5)

i f % = 1, set y = I and b = * (see exenple 2.6)

Otherwise an exit from t h i s routine is made.

b u t String

t a + b - c {
t

h = b a n d R = +
(Y 0 i

.*. y * + and - - C

E%umple 2.1 Sett ing y and A when R = + B

Input S tr ing

1- a * (b + c) !
?

L - l i s t
L__

I
-1

C

+
Example 2.2

h * b and R R = (

y = + a n d b - -
(Y

..

Setting y and when Rg = (

Input Str inq

1- a + b - c 4

L - l i s t

C h = a a n d R

.*. y = + and 8 = -
(Y e

b

+
Example 2.3 Setting y and A when R = !- a

Input S t r iag

L - l i s t

4
= b and qq * -

hpl
C

+ .'. y 9 - and A = +
Example 2.4 Setting y and A when R = -

0

XnDut S tr i q

1- a * b * c j
t

L - l i s t

h = b a n d (, = *
Y 8 -1

C .*. y = * a n d A - /

*
Example 2.5 se t t ing y and 4 when R - *

8

Input S t r ing

k a/b * c 4
t

L - l i s t

i
C .*. y 1 and A *
*

Example 2.6

h can be considered as the "inverse" of y since i f for some oper-

and h we have y hi A hi, t h i s would be equal t o 0 or 1 depending

on whether y = + or 0 , or y = * or 1 , (e.g. - a + a - b and * a/a - 1).

Sett ing y and A when cZB = /

i'

In e f fec t , this pa i r of operands with their respective operators

would be deleted from the L-list.

2. THE SCAN FOR CCHWN EXPRESSIONS

After y and A have been set , a scan is made up the L - l i s t , com-

paring the operators w i t h y and A.

operand h and Ri i n the L-list is checked. I f hi = h, the "com- i ff

muting" routine is entered (see Example 2.7).

I f the operator Izi - y , the

I f hi # hy, the scan of the operators i n the L - l i s t i s con-

tinued u n t i l a +lowcr.operator than y is encountered. In t h i s

case an e x i t is made, (see kample 2.8).

b u t S t r inq

f + a + b - c + d + a d
t

L - l i s t --
-I
dl

+
d

+
C

ha = a and f? = +,.'. y = + and A -
During the scan it is found that:

R

e

- + = y hlrt ?Iw1 = h f ha = a :. s c m ttnEiinuer

c # ha, = a .'. scan continues

RW3 + y but hw3 d # ha a :. scan continues

Rw = + = y and hM = ha .*. the coxmuting routine

is entered

8+1 - A but hw2 %2

b

+
E x q A e 2.7 Case where commutative l a w can be applied.

t f * a + b + c d
t

-- L - l i 6 t

4 h @ = a a n d R **,:. y = * a n d A = /

c

+

b

e
During scan It I s found tha t RWl # y or A

and b(R) < a($, .*. an exit is made
e+l

*
Example 2.8 Caoe where camutatiwe law is not applicable

above Ri i n the L - l i s t , is
"i * Now i f R = A, the operator,

I

checked. If hl = ha, the "deleting" routine is entered and A hi is

ef fec t ive ly removed from the L - l i s t .

paring operators with y and A is continued.

If hi # no, the scan for cam-

(see Example 2.9).

Input string

1- f + a + b - c + d - a j
t

-- L - l i s t

I
a

0

d

+

h C Y - a a d Q =+,.*. y - + a n d A - -

During the scan of the L - l i s t i t is found that:
e

R Btl = + - y but hwl - b # Ita,:. the scan is

con t inued

Rw2 - A but hw2 - c # ha;. the

RW3 + y but hcru3 = d # ha,:. the

scan is

scan is
con t inued

cont inued

R - - * A and hM = a - ha,.*. the delet ing
8+4

routine is entered

C

-
b

+
Example 2.9 Case where deletion of operand8 is possible.

I f Ri # y or Ri # A but Ri) or 4, an exi t is made from the

scan back t o the Ershov algorithm which then en ters the operand

ha i n the L - l i s t .

entered in ths L - l i s t , and R i m * or /, set y - * and A - /.
repeat the above procedure

Example 2.10).

Now i f ai # y or A, and Ri is the last operator

Then

for these new values of y and A , (see

If Ri does not s a t i s f y any of the above conditions, an e x i t is

mab from the scan back t o the Rshov algorithm which en ters no, i n

ths L-list .

Input S t r ing

a + b * c / b + d d
t

L - l i s t --
-I
d

+
b

/

h* = b a d R 8 * +

:. y = + a n d 5 = -

R = * # y o r A

.*. Y e= * and El e= /, and repeat scan with

w.1

new y and A

C

*
Example 2.10

3. TEE 'CCaHMUTI~G" ROUTINE

Case where y and A must be reset.

The "ccmmuting" routine is entered whenever R = y and hi = h i a.

F i r s t , thts routine checka for additional occurances of pa i r s ,

y hm, W d i a t e l p above the f i r s t p a i r encountered by the scan.

The operator, Ri+l above hi i n the L - l i s t is campared t o y.

Ri+l

t h i s check for additional pairs, y ha, is extended t o hi+2s

(see Example 2.11).

I f

y, the operand, hi+l, is compared with ha. I f hi+l = hLY,

Whenever hi+l # ha, the elemcats below Ri, the operator below

the f i r s t equivalent operand found, are moved up i n the L - l i s t , t o

effect ively delete the operands equivalent t o h

their operators, Ri, from this p a r t of the L - l i s t .

and along with
Cy

Then the operands

equivalent t o h and the operator y are added al ternat ingly t o the
CY

bottom of the L - l i s t , un t i l a l l the operand6 have been entered

An exit is then made t o the algorithm, (see Examples

2.11 and 2.12). The grouping algorithm w i l l col l&ct

t h i s +-string or *-atring of cOPmOn variables and express

them as a product or power, respectively, of the variable.

Input S t r inq

4 d + a + b + a + c + a {

L - l i s t
t

-I
L - l i s t -

4
C C

+
a

= + = y a n d h = a = h
%2 a c 2 rY

= + = y a n d h - a - h
%+3 Ct4-3 CY

+
b

= + = y b u t h * c # h + Rw d-4 Y
+
a

+
.'. L- l i s t becomes a

+
=9

b a

+ +
Example 2.11 Multiple occurances of an operand tha t can be com-

muted e

Input S t r i n g

1 a + b - c + b - d q
t

In i t i a l L - l i s t

-I
d

= = b
CY

b Re = +

hwt2 = hcY
+

%2 = C and

-

Resultant L - l i s t

-1
d

C

b

+

Example 2.12

4. TBEDELETLlQC ROUTINE

Comnuting an operand and operator

The deleting routine is entered whenever R = b and ni = h . i (Y

9 and h are deleted from the L - l i s t and when required, the t r i p l e ,

h A hi, is replaced in the L - l i s t by the operand b or by the op-

erand 1.

which is immediately below the operand hi - he, are moved up so as

t o de le te Ri and hi from the L - l i s t , (see Examples 2.13 and 2.14).

i i

!Y

The elements in the L - l i s t below the operator Qi = A

Input S t r inq

a + b + c - b + d t
t

L - l i s t

4
d

+
b

-
C

+
Example 2.13

I m u t S t r i q

1- a * b * c
t

Daletion of an operator

/ b + d j

\ a + b + c - b - d j
t

L - l i s t

-1
d 3

h - b a n d R = + 4-
cy 0

.*. y m + a d b = - C

b h and 9 - - - A 8+2 ry

I n i t i a l L - l i s t

R = *
8 h - b

d .*. y - * and A - /
+
b

I

-1 tY

hd2 = b = h

and RW2 = 1 = b

.'. L - l i s t becomes

(r

C

and operand from the L - l i s t

Resultant L - l i s t

4
d

+

C *

Example 2.14 Deletion of an operator and operand from the L - l i s t

I f y - * and R # y , (i.e. i f the i n i t i a l y and A were changed), a
h and Ri were the l a s t operand and operator t o be entered i n the

L - l i s t , and a(y) > 4(Ri+l), then the operand "1" is added t o the

L - l i s t . An exi t is then made t o the Ershov algorithm which then

compares the b(Rg) with b(Ri+l), (see Example 2.15).

i

&xu&Strisn
\ a + b / b + d {

t

I n i t i a l L - l i s t

- 1
d

+
b

1 a + b / b + d i
t

Resultant &-list

4
d

4-

1

= + a n d h a = b %
y = * and A - /

Rwl = / = A

Rf) + Y

pCy) Where Ri+l = +

...k a + b / b + d { 3 b a + l + d j

Example 2.15 Daletion of an operator and operand f r an the L- l i s t

and replacing the t r i p l e by "1".

If '8 = c or (, the procedure t o be followed w i l l depend on

Q

the Ershov algorithm by comparing b(R) with b(RW2' , (e,g.

1- A - B - A 4 3 1 CiJ @ A) . If RWl = /, add the operand 1 t o the

L - l i 6 t and continue the Ershov algorithm by comparing b(R) with ' e

I f RWl = -, change it t o GI, the unary minus, and continue

Wl

p(n,,,, (e*g*

awl from t h e L - l i s t and then compare the a(@
ence of the new R

L - l i s t and continue the Ershov algorithm by comparing b (R

F. A/B/A + C i * F ~ / B X 4). ~f R~~ =), erase

) with the preced-

>$(+), add the operand 0 t o the
B- 1

If %+1

)
' 9-1

with tha t of the operator above % i n the L - l i s t , (e& A* (B-B)+C-f a

1 A*6+C 4) . If
a t the elcmsnt t o ths l e f t of R

kAH-1) .

from the L - l i s t and the Ershov algorithm is continued by camparing

h (R g) with tha t of the last operator in the L - l i s t , (e.g.,F AJUB/A+C 4

> 3, continue the Ershov algorithm by looking

i n the s t r ing , (e.g.,kA+B(B-B)+Df * 8-1
Re1 - + or *, R If RWl. # -s /, or), i.e., is erased

91

B+C 4 and 1 A*(B+.C-B) 4 * 1 A * C j) .

If y - * and R # y (i.e., i f the i n i t i a l y and h were changed) 8
and d(y) = h(Rwl) erase R

algorithm by comparing b(R) with the precedence of new R

from the L - l i s t and continue the Ershov Btl

8 el, b o g * ,
A+B/B*C{ =$ 1 A+C 4).

I f y and A were not changed and 9 # 1- or (, the Ershov algorithm 6

0-1' is continued by looking a t R

I11 . E FACTORING ALGORIT€R4

The factoring algorithm transforms the input s t r ing in to a

shorter equivalent string by application of the d is t r ibu t ive law of

algebra. In the present formulation the d is t r ibu t ive l a w is f i r s t

applied t o factor out the tr igonoectric functione and then the re-

maining factors i n the remainder of the input s t r ing . Within the

general algorithm any derigaated classes of expressions such a6 8

. p-ticular variable ra ised to (L power, a trigonometric function, an

exponantial function, a logarithm function, etc.-could be factored

out i n a specified order.

SWOND- By tba dofini t ion of the d is t r ibu t ive law, for

ell a,b,c, elements of the f ie ld K, a * b +, a * c = a *->. The

factoring routine is basically an algorithm for the recursive 8p-

pl ica t ion of th i8 l a w t o the input s t r ing . As a r e s u l t of the par-

t i cu l a r method used there are 8- l imitat ions t o the general i ty

achieved by the algorithm.

me factoring routine ia a subroutine within the Er6hov a l -

gorithm.

in to the M-mat r ix .

X t -&s entered whenever a *-string i a about t o be entered , .
The routine applies the d is t r ibu t ive l aw t o

t h i s *-string and the f i r s t *-pattern it encounters which contain6

a t least one of the operand8 of the *-string. The select ion of the

veriables t o be factored out of *-strings is a function of the

ordering the *-string as it appears i n the input s t r ing . e.g.,

a * b * c + a * d * e + f * b * c

3 a * @ * c + d * e) + f * b * c

f;

but a * b * c + f * b * c + a * d * e * b * c * (a+f) + a * d * e .

b * c * (a+f) + a * d * e

A second l imi ta t ion of the algorit tm is t ha t the nth power of

an elanent of the f i e l d K i s treated as a d i s t i n c t element of K

and not ae the product of a-terms.

not be factored out of a pomr of the element and a *-string con-

taining the variable, e .go, xP2+a*St & x*(x+a) .

For th i s reason a variable can

- TBIBP LBBBL The factoring algorithm is entered whenever the

Ershov algorithm is about t o en ter a t r i p l e , consisting of operand,

r e p F i r s t , the factoring routine ocaais

up the L - l i s t for a row reference which is connected t o t h e

*-string or a'%+" or "-*I.

*-pattern, (see R5 i n Example 3.1), the scan is continued; if it

re fe r s t o a *-pattern, (see R4 and R2 in example 3.1), the operands

of the pa t te rn a re compared with those of the current t r i p l e .

none of the operands of the f i r s t *-pattern encountered are equiva-

l e n t t o those of the t r ip le , (see Rk i n Example 3.2),the scan of

the L - l i s t is continued,

is found to be the s u m a8 one of those of the t r i p l e , it is en-

tered in to an &--.

,operand, i n to the W - o o t r i x .

I f the row reference docs not r e fe r t o a

If

When one of the operands of a *-pattern

Thus the &-- becames a list of those

--

operands of a *-string and a *-pattern tha t are ident ical , and can

therefore be factored out. The row reference t o the *-pattern is

saved i n a temporary location, y , and is deleted from the L - l i s t ,

(see Example 3.2).

Izrput S t r iaq L-l i s t

R4

+

M - M t r i X

R l a * h

R2 RT * C

R3 e * f

R4 R 3 * g

R!i 2 P 2

R5

+
d

+
C

*
b

*
a

*
k

Example 3.1 The L - l i s t and M-matrix, upon entering
the factoring routine, displaying a
*-rrtring in the L - l i s t and the *-patterns
i n the M-matrix.

Input String

1 n + k * a * b * c + d + zP2 + e * f * g - a * h * c - /
t

L - l i s t I- l is t -- L-list -- -
4 -I

614 a

B2

-
R4

+
R5

+
d

+
C

*
b

*
a

*
k

+
R5

+
d

+
C

*
b

*
8

*
k

g-matrix

R l 8 * h

R2 R l * c

R3 e * f

R.4 R 3 * g

R5 e P 2

Example 3.2 Factoring "a" from the *-string and the
*-pattern referred to by "R2".

The operand tha t is t o be factored out (now i n the I - l i s t) is deleted

from the L - l i s t and from the *-pattern. The deletion from the

*-pattern is accomplished in one of two ways:

(1) if it is in the bottom row of the *-pattern, the row refer-

ence, y, vhich refers t o the *-pattern is changed t o the

other operand in that row which is a reference t o the re-

mainder of the *-pattern,

e.g., t o delete "c" from R l a * h
R2 R l * c

(2) if it is i n any of the other rows of the *-pattern the other

operand of that row is used t o replace the reference t o that

row, i.e., the linking of the chain is changed so as t o ex-

clude the operand from the *-pattern.

e.g., to delete "a" from R 1 a * h
R2 R l * c

R 1 a * h Rl a * h

R2 R l * c R2 h * c where y = R2
*

The other operands of the *-string are a l so compared with

those of the *-pattern.

occur in both, it is a l so entered i n the I-list and delet-

ed from the *-string and from the *-pattern as described

above, (see Example 3.3).

I f a second operand is found t o

L - l i s t --
i

R4

+
R5

+
d

+
C

*
b

*
k

-- I-list

a

L - l i s t --
Y " 4

R4

+
R5

e-ma tr ix

R 1 a * h *
R2 h * c

R3 e * f

R4 R3*g

R5 z P 2

k

I-list --
a Y h

C

E-ma tr ia,

R l a * h

R2 h * c

R 3 e * f

R4 R3*g

R5 z P 2

Example 3.3 Ik le t ion of a second operand from the
*-string and the *-pattern.

When a l l the operand8 that occur in both the *-string and the

*-pattern have been deleted and put i n the I-list, the remainder

of *-string is then entered in the M-matrix. Next a t r i p l e , con-

s i s t i n g of the reference t o the remainder of the *-string now in

the M-matrix, the operator "+" or "-", and the reference to the re-

mainder of the *-pattern, is entered in the M-matrix.

Ro, of t h i s t r i p l e is determined by the operator, R

*-pattern reference and the operator, @S , preceding the *-string.

If R

"-", (see Example 3.4).

The operator,

preceding the
P I

and R are both "+" or both 1'-1', Ro is "+", otherwise, Ro is P S

The reference t o th i s t r i p l e is entered in the L - l i s t followed al-

ternately by "*" and the elementr of the I-list, (see Example 3.5).

After these have been added an ex i t is made from th i s routine.

L - l i s t

a4

+
R5

+
d

+
b

*
k

-- I-list

a

C

&matrix Y ' h L-list g-nutrix

8 * h R4 It1 a * h

R2 h * C + R2 h * c

R3 c * f R5 R3 e * f

R4 B 3 * g + R4 R 3 * g

Rs 2 P 2 d R5 2 P 2

+ R6 k * b

R7 R6 - h

Example 3.4

L- lis t

R4

+

--

Rs
+
d

+

Transfer of the remainder of the *-string t o
the M - m a t r l x and the entry of the f ina l
t r i p l e on the M-matrix.

L - l i s t

R4

+

--

* R5

+
d

+
R7

*
C Example 3.5 Entry of the

factored form * on tbe L - l i s t .

a

IV. naLTIPLICATION ALGORITEM

Th arult iplication algorithm transform the input s t r i n g i n t o

an equivalent expanded s t r ing by a recursive appiiciftitIi of ib

dis t r ibu t ive law-for a l l a,b,c elements of the f i e ld K, a * (btc)=

aWa*c.

tha t 0 5 n S 9 , is expanded into a product e.g., x P 3 =) x * x * X.

The power of a variable, x h where n is an integer such

SECOND LEVEL Thc multiplication routine i s used a s a sub-

routine within the Ershov algorithm. It can be entered each t i n e

a t r i p l e with '*I' as th operator i s about t o be entered in to the

M - p a t r i x .

a reference t o a +-pattern, an exit from th i s routine is made.

When exactly one of the operands is a reference to a +-pattern, the

reoulting expansion is such that each operand of the +-pattern is

multiplied by the other opmrand of the current t r i p l e , (see Example

4.1).

+-patterns, the resu l t ing expansion from one application of t h i s

routine is such t h a t each operand of one of the +-patterns i a

multiplied by the reference to the other pattern.

Each t r i p l e is chckud and i f neither of its operands is

When both operands of the current t r i p l e are references t o

Input S t r in&

1- c + a * (b-ctd) -i
t

L - l i s t

-1
R2

*
a

* 1- c + a * b - a * c + a * d i
t

M-matr ix L-1 is t M-matrix

R 1 b - c ~ -1 R l b - c

R2 R l + d R3 R2 R l + d

T I p a c * 4

R4 R 4 a * c

- R 5 a * b

R5

(where the current t r i p l e is: a * R2

Example 4.1 Multiplication of a variable and a +-string.

When a *-string contains two or more +-strings as operands, the

multiplication routine is applied two or more times t o yield the

expanded s t r ing .
e.g., (a+b) * (c-d) * (e+f) 5 a * (c-d) * (e+f) + b * (c-d) * (d+f)

3 a * c * (e+f) - a * d * (e+f) + b * c * (e+f) - b * d * (e+f)

a * c * e + a * c * f - a * d * e - a * d * f + b * c * e + b

* c * f - b * d * e - b * d * f

(These are 3 +-strings, therefore 3 passes are made through the

multiplication routine.)

If the i n i t i a l scan of a t r i p l e containing a "*" operator en-

counters a reference t o a +-pattern, then the +-pattern i n turn is

scanned and each of i t 8 operands along with the appropriate oper-

a tor is transfered to the E-list-e t e q o r a t y list =sed t o hala the

+-string while it i s multiplied by the other operand of the current

t r i p l e . The operator in the expanded expression, corresponding

t o the individual operands in the E - l i s t , are determined by the op-

e ra tor ci t ha t precedes the representation of the current t r i p l e i n

the input s t r ing and the operator8 R

ing operand8 i n the +-string.
B

*I- I? , 5 is "+'I; otherwise RE is "-", (see Example 4 .2) .

e
tha t precede the correspond- S

I f c) and Rs are both It+" or both

After a l l the operand8 of the +-string are transfered t o the

E - l i s t , the remainder of the *-string of which the +-pattern refer-

ence was a par t , is put in the M-matrix and deleted from the L - l i s t .

The reference t o t h i s *-string is recorded i n E, (see Example 4.2) .

Next, the t r i p l e s consisting of f * and each operand from the E - l i s t

are entered i n the M-matrix. The references t o these t r ip l e s , a-

long with the corresponding operators from the E - l i s t , are entered

i n the L - l i s t , (see Example 4.3).

an exit is made.

When t h i s has been completed

I - . - -

Input St t in&

1- c - a * (b - c + d) * e * f + g-1
t

L - l i s t M-matrix

g R l b - C

+ R2 R l + d

f

*
e

*
R2

*
a

L - l i s t

-1

.. i

E - l i s t

d

M - m a t r i x E - l i s t

R l b - c d

R2 R l + d -
R3 a * e C

R4 R 3 * f +
b

f - R4

Example 4.2 The operande of the +-pattern (referred t o by RZ)
and the appropriate operators are put i n the E - l i s t .
The elements of the *-string, excluding "R2" are
entered in the M-matrix and E i s set.

Input S t r i n g

t c - a * (b - c + d) * e * f + g-1
t

L - l i s t M-matrix E - l i s t

i R l b - c d

f 9 R4

R2 R l + d -
+ R 3 a * e C

R4 R 3 * f +

L-lirt

i
8

+
R5

R6

+
R7

b

M-RI4ltri.X

R l b - c

82 R l + d

R 3 a * e

R4 R 3 * f

R5 R 4 * d

R6 R 4 * c

R7 R4 * b

(The result of this upon the input string

c - a * (b - c + d) * e * f + g would be

c - a * e * f * b + a * e * f * c - a * e * f * d + g)

Example 4.3 Entering the triples in the M-matrix and their
references in the L - l i s t to yield the expanded
result .

The routine t o expand a power of an operand is also a sub-

routine within the Ershov algorithm.

routine is entered whenever a t r i p l e ,

ed i n the M - m a t r i x .

otherwise an exit is made.

*-string is formed and entered i n the L- l i s t :

The power expansion sub-

is about t o be enter-
h3p h,l s

If h*l j.6 an integer this t r i p l e i s expanded;

When h&l is an integer, the following

h * h * * h
(r m (r

h&l times

(see Example 4.4).

Input S t r ing

1- a + b * c P 3 * d + e 4
t

L - l i s t

4
e

+
d

*
3

P

C

L - l i s t

4
e

* +
d

*
C

*
C

*
C

Exapple 4.4 Expanding the power of a variable.

I

The trigonometric s h p l i f f c a t i o n algorithms express the pro-

duct of two or more trigoncmrtric functiom as the sum or d i f f e r -

ence of appropriate trigonopatric functions, subst i tute trigono-

pstric function6 with porit ivc arguments for those w i t h negative

ugrrsnto, and oubstituta valoas for the trigonometric functions

of zero by application of the following rules.

1. sin. x sin. y = +os. (x - 37) - COB. (x + Y)]

sin. x coa. y = $sin. (x + y) + sin. (x - y)]

cos. x sin, y = (sin. (x + y) - sin. (x - J)]
COS. x COB. y = (cos. (x + y) + COS. (x - 4

2.

3.

sin, (-x) - - sin. x cot. (OX) = - cot. x

COS. (-x) - corn. x sec. (-x) = sac. x

tan. (-x) = - tan, x CSC. (-x) = -ae. x

a h . 0 = 0

COS. I) = 1

tan. I) = 0

sec. 4 = 0

If "cot. 6," "CSC, @," or "log. 0" is found, an er ror is indicated

ami the processing of t b s t r ing is terminated.

found, the value "la w i l l be rubrt i tuted.

E "exp. V' is

SECOND m L OF TRI-C MULTIPLICATION ALGORITEM "he a l -

gorittmr for expressing the product of twr, or more trigonometric

functions as the sum o r difference of trigonometric functions is

a subroutine with the Ershov algorithm. After a trigonometric

function has been entered in the M-matrix, the trigonometric multi-

plication algorithm is entered. A check is made to see if the ref-

erence to this function, which is now to be entered on the L-list,

will be connected by a "**' to the row-reference to another trigono-
metric function. If so, the rules for the multiplication of these

functions are applied. The triples representing the resulting sum

or difference are entered in the M-matrix and their row-reference

replaces the row-reference t o the trigonometric function of the

product now in the L-list, (eee atample 5.1).

Input String:

a + b * sin. x * COB. p * c + d{
t

L-list M-matrix --
4 R1 cos. y

d R2 sin. x

+
C

*
R1 (tagged)

*

L-list --
4
d

+
C

9 *
Rl0

E-matr ix
Rl C08 . 7
R2 sin . x

R 3 x + y

R4 x - y

R5 1 / 2

R6 sin . R3
R7 R5 * R6
Rs sin . R4
R9 R5 * R 6

R10 R7 + R9
The output string is as follows:

a + b * (k * sin. (x+y) + # * sin.(x-y)) * c + d.
Example 5.1 The replacement of a product of trigonometric func-

tions by a sum of trigonometric functions.

If the reference t o the trigonometric function j u s t entered i n

the M-matrix w i l l not be connected by a rc*r' t o another trigonometric

function i n the L - l i s t , one of two things is done. I f the operator

preceding the current trigonometric function in the Input e t r ing is

p-lower than 0*1', the reference t o the function is entered i n the

L - l i s t and an exit is made, (see Example 5.2).

ence t o the trigonometric function is tagged so it w i l l be eas i ly

recognized i f another trigonametric function, connected t o it by

ll*Il

Otherwise t h i s refer-

, is encountered. Thio tagged reference is entered i n the

L - l i s t , (see Example 5.3).

If no other trigonoleatric function is encountered i n the same

*-string, no t r igonmetr ic multiplication is possible, so the tag

is removed €ram the row-reference before the *-string is entered i n

the M - m a t r i x .

Input S t r ing

t a + s i n . x * c + d j
t L - l i s t --

4
d

+
C

*
R l

E-matr i x

R1 s i n . x

p(R$ <#%(*I

.'. R 1 is entered i n the L - l i s t

and an e x i t is made.

I

Example 5.2 When no trigonometric multiplication is required and

< # (*) I a normal exit is made.

Input S t r i n g

t a + b * s i n . x * c * c o s . y + d {

L - l i s t
t

L - l i s t -- --
4 -I
d * d

+ +
Y (tagged) R l

F-ma tr ix

R l cos . p

cos

Exantple 5.3 When no trigonometric multiplication is needed now

but ,here is a poss ib i l i ty tha t there may be, ,he

tagged reference is entered i n the L - l i s t .

SECOBOD LEVEL OF TRIGONOMETRIC SIGN ALGORITBn The algoritbm fo r

the subst i tut ion of trigonametric functions with posit ive arguments

fo r those with negative arguments i s a l so a subroutine within the

Ershov algorithm.

a negative argument is about t o be entered i n the M-matrix.

the s i g n of the argrmrent is made posit ive. I f the trigonometric

function is cosine or secant,an exit is made, (see Example 5.4).

Otherwise, the sign of the function must be changed, (see Example

5 .5) .

operation.

It is entered when a trigonometric function with

F i r s t ,

If p(R) is equal top(+), R is changed t o the inverse B 8

Inout str ipa

a + COS. (ob) + c 4
t

- L - l i s t @matrix -- G l i a t g-n?atr ix
i Ul 6 - b * 4 Eu I - b

C

+
R l

C

-+

b

cos cos

Example 5.4 Substituthg for a trigonometric function with a

negative argumnt, the function with a positive argument.

b u t strinp

a + sin. (-b) + c d
t

L - l i s t -- L - l i s t E?!!!!??!!!! --
t R l 0 - b 3 4

g-matrix

Rl 6 - b

C C

+ +
Eu b

0 .
R - + s i n R e = - 8 i n

B
.*. a + sin. (-b) + c a - sin. b + c

Example 5.5 Substitution for a t r i g o n m t r i c function with a

negative argumant:, the negative of the function with a positive

argument.

I f fi(a) is equal t o +(*), the trigonometric function is an
B

operand in a *-string. This in turn w i l l cause

the operator preceding the *-string t o be changed before the s t r ing

is entered in the M-matrix,

(see Example 5.6).

trigonometric function with a posit ive a r g m n t is entered in the

A tag, TS, is set.

A t tha t t i m e the tag, TS is cleared,

O r , f ina l ly (i.e., when P(R) < p(+) O r p(*)) , B

M-matrix and a *mazy zihxis is inserted beiow the row-reference t o

the function in the L - l i s t , (see Example 5.7).

Input S t r ing

a + b * sin. (- c) + d{
t

L - l i s t -- L - l i s t g-untr5.x --
4 R l 0 - c -I
d d

+ * +
R l C

d R2 sin c d

* + +
R2 * R 2

E-matrix

R 1 8 - c

TS = 1, Rp = *
+a tr ix

R 1 8 - c

R2 sin . c

* *
b b

R - + TS = 1 a = - TS 9 0
B B

... a + b * sin. (-e) + d * a - b * sin. c + d

Example 5.6 Setting and clearing TS t o change the sign of a *-string

b u t Stt i-

a + b * (sin.(-c) + d) + e 4
t

-- L-lis t g-trix L - l i s t

4 R l 0 - c -1
e e

+
1

d

+
R l

+
1

d

+
R2

8 i n

X-triX

R l 0 ' C

B 2 s i n . c

.*. a + b * (sin. (-c) + d) + e 3 a + b * (-sin. c + d) + e

-le 5.7 U s e of unary miam in replacing the t r i g m t r i c

function of a negative argument with the wgatiwe

of the trigonmmtric function with a posit ive

riti3m. It is entered whhnapbr a t r i g o m t r i c , logarithmic, o r ex-

ponential function with zero argumat 3s about fn be entered in the

M m a t r i x . I f the function is a cos i~ te o r an exponential, the value

1 is substi tuted for the function (see Example 5.8). If the

I

function is sine, sngent, or secant, the value 0 is substituted

for the function. After these substitutions are performed, an exit

is made. If the function is cotangent, cosecant, or a logarithmic

function, an error is indicated and the simplification is terminated.

Illput string:

1- a + cos. B + c d
t

L-l ie t --
4 *
C

+
0

.
cos

L-list --
-I
C

+
1

Example 5.8 Substituting a value for a trigonometric function

of zero.

VI. THE ZERO-ONE STAPLIFICATION ALGORITHM

The zero-one simplification routine is entered whenever a tri-

* , is t o be ie *?+!t ?: - I: ;:*Si i m / i i , or llpll
$+I

pres h e, w k r e Lz
"ry 9+l%tl

entered i n the matrix. I f neither h nor h is a zero or one, an

exit is made.
Y V+l

If h is a zero and CZ is p-higher than "+", the t r i p l e is
Y (3+1

replaced by 8 .

0

as follows:

for a l l a, elements of f i e l d K.

If Rstl IS'%", the t r i p l e is replaced by h and i f 4-1
is "-", by, # E Rdl* The iden t i t i e s which are applied are Wl

1. @ * a * #

2- # / a * # Rwl is higher than 1'+"

3. # P a * @

4. $ + a * a
%+1 is 1'++(0

5 . # - a * - a (RBF1 is t ' - t ') *

Whenever h i s a one, i f APl is +-higher than 'c*rc, the t r i p l e is

replaced by one,

The i den t i t i e s are as follows:

for a l l a, elements of f i e l d K,

Q

is "*", by h&l. Otherwise an ex i t is made.

1. 1 / a * l /a 4. l * a * a (RP1 is *)
2. l + a * l + a 5 . 1 P a a l (ap1 is

3. 1 - a * l - a p-higher than I**")

Next, i f h is zero and R is &-equal t o "+", the t r i p l e is ra-

placed by h . If !Iwl is &-higher than "*", the t r i p l e is replaced

by one and i f R Wl

is "/" an e r ro r is indicated and the processing of the s t r ing is

terminated.

for a l l a, elements of f i e l d K,

d-1 Btl

cy

is '**" the t r i p l e is replaced by zero. If Re+l

The appropriate i den t i t i e s are as follows:

1. a + b * a (Rwl is equal t o "+")
2. a - b e a

3. a P b = a l

4. a * # = a B (%t1 is equal t o "*")
5 . a / b * =

is &higher than "*") (Retl

tRW1 i s equal t o "/"

(is not an element of the f i e l d IC, therefore an e r ror

is indicated).

Finally, if hdl I s one and Rwl is 4-equal t o "+", no simpli-

f ica t ion is possible, so an e x i t is made.

replaced by h. .
for a l l a , elements of f i e l d K.

Otherwise the t r i p l e is

The appropriate i den t i t i e s are as follows:
CY

1. a + l - a + l is &-equal t o "+*')

2. a - l j a - 1

3. a * l * a

4. a l l - a

f . a P 1 - a

VII. OTHER THINGS TO BE DONJ3 IN TBIS AREA There are many directions

dongwhich future work i n thicl area can proceed.

things yet t o be seem t o f a l l i n to three classi f icat ions: (1) an

extension t o the existing algorithms, (2) an algebraic integration

algorithm, and (3) an executive program t o t i e together tha di f fe r -

en t algorithms for factoring, multiplication, etc. , t o give the

user the option of which algorithms t o apply and the order i n which

they are t o be applied; and t o evaluate the numerical value of the

resul t ing expression.

Some of the

Some of the extensions that need t o be added are: (1) the

a b i l i t y to subst i tute an expression fo r a variable, (2) the simpli-

f ica t ion of logorithmic expressions by application of the ident i ty ,

log (a*) = log a + log b, (3) the simplification of exponential

expressions such as ex * e' 20 e*, (4) the simplification of ex-

pressions involving imaginary numbers, (5) the select ion as t o the

order of factoring, (6) UI extension t o take care of i n f in i ty where

possible and (7) the extensions of the exis t ing trigonometric al-

gorittmrs. The subst i tut ion of an expression for a variable can

eas i ly be done by f i r s t entering the expression in the M-matrix

and then subst i tut ing its reference fo r the variable each time the

variable I s encountered during the processing of the input s t r ing.

The simplification of logarithmic and exponential expressions would

e n t a i l some additions t o the t r lgoae t r ic multiplication routine.

These can eas i ly be made by inserting a few checks for "EXP" and

"LOG" i n addition t o the rules for handling the products and/or

powers of these expressions.

volving imaginary numbers would require tha t the imaginary uni t

have a unique representation and an algorithm t o recognize and sub-

s t i t u t e for the powers or products of the imaginary uni t the appro-

p r i a t e values, -1, +1, +i, or i.

The simplification of expressions in-

An sxtcnsi~~ nf t k rthct ion ~f the CX&X 3f f a c t o r i q requires

more work and thought.

with a specified operator is re la t ive ly simple, but an algorithm t o

check for a smaller sub-clasr of t h i s general c lass requires =re

thought.

representation for i n f in i ty and an additional algorithm t o sub-

s t i t u t e i n f i n i t y for any scrm or product of terms including in f in i ty

and ala0 t~ set an expressionwith in f in i ty inthe ddnarnfnabar to zero. The

extensions t o the exis t ing trigonometric algorithms are s t ra ight -

forward.

processes only products of s ines and cosines; so an extension for

the other trigonometric functions is needed. Since the functions

cotangent, secant, and coscant can be expressed i n term of s ines

and cosines, t h i s extension can be accomplished simply by a tem-

porar i ly representing tbecle functions i n terms of sine and cosine.

An externion for the hyperbolic trigonometric functions involver

the ru les for the products of these functions and a few other ad-

d i t ions t o the exis t ing t r i g o n m t r i c multiplication algorithm.

This ehould be very eas i ly accomplished.

t r ic value and the trigo-tric sign a lgo r i thw are concerned

A check for a general c lass of expressions

The extension to take care of i n f in i ty requires a unique

A t present tha t r i g o n m t r i c multiplication algorithm

Tha exis t ing trigon--

only with curcular trigonometric functions. The extension of these

to takc,care of hyperbolic trigonometric functions would be very

simple.

Most present approachee to algebraic integration have used a

"table-look-up" technique.

been under preliminary investigation is the use of operational tech-

niqW6 for thz entiderivrti= spttrter, 0 . Iri. this iaethtG the

operational formulae are applied t o the expression t o be integrated

k and the resul t ing expression w i l l contain the operators D where k

Another method of approach which has

-1

is a posit ive integer. The par ts of the expression operated on by

D are then different ia ted k time8 yielding the algebraic expres- k

sion for the integral (antiderivative) of the or ig ina l expression.

This method can be applied t o a function, F, of the form:

'IF I G E whure G is a polynomial, fo r each p, of de-

gree M , and w h e r e H is a function whose first H + 1 integrals
P P P

are known", [33 t o obtain an exact solution.

P P P P ' l

When a function can be approximated by a function F of the form

described above, t o within a specified degree of accuracy, an in-

exact integrated expression can a l so be obtained by applying t h i s

method t o the approximating function. Some examples of these

functions are "sin kx, cos kx, sinh kx , corh la... fo r k < 1, and

log kx for x > 1, and ek for k < 1.''

The development of an algorithm for algebraic integration by

t h i s Pethod w i l l require a tremendous cmrount of work. Investigat-

ing fur ther the classes of expressions tha t can be handled i n t h i s

way would be the first step. The executive program w i l l e n t a i l much

additional work and thought. Currently, there are e s sen t i a l ly two

ef fec t ive ways to incorporate these a lgor i thm in to a user 's pack-

age. The preferred package depends on the individual ins ta l la t ion .

I f the installation is such tha t the user can in t e rac t with the

machine by a coneole typewriter or similar device, M executive

n t f i m t * r- -0- of the f o l , l , = ~ i q t y p ~ mild ba best.

gram would contain a l l the algori thm and would execute one or more

of them according to parameters set by the utmr.

specifying these parameters should be kept as simple as possible.

With t h i s type of set up, the user could apply one o r more algo-

r i t t r s to h i s input s t r ing , look a t t h i s r e su l t , and then decide w h a t

to do next. The eecoad way

incorporate thsllr i n to a calPpiler.

which algorithmo to apply and the order in which t o apply them dur-

ing the course of a computer program.

the option of how many times an algorithm is applied t o an expression

o r of checking the r e s u l t of each application and determining i f

addition applications are needed.

i n the use of the multiplication algorithm.

it completely multiplied out without having to determine haw many

applications t h i s would require or he might desire only p a r t i a l

multiplication. Another option t h a t should be included is the a-

b i l i t y t o apply two or =re algorithms i n a specified order a speci-

f i ed or computed number of times. This is important for expressions

The executive pro-

The notation for

t ie the a lgor i thm togethar would be t o

Thh user could then specify

The user should also have

This is par t icu lar ly important

The user might want

envolving many products of trigimometric functions.

bination and order would probably be (1) the trigonoactric multi-

plication algorithm, (2) the automatic simplification algorithm,

(3) the trigonometric sign algorithm, (4) the trigonometric value

algorithm, (5) t h zero-one simplification algoritb ,and (6) the

automatic simplification algorithm. An algoritb to subrtituta t b

~1mtiea-1 url*xes far the eprmds -6 te avaluatts the resalting ex-

pression ie also needed. Whan these algorithms have been incorpor-

ated into an algebraic colapiler, these options are inxnediately

available .

The ideal com-

x
- P

ro

1. ERSHOV, G. P. R o m e Roar- for the
BESX Caaoater. Tranrlated from the Rusr1.n

Pargammn Rear, Inndon-Mew York-Pari6 (1959).
by n. o m a and Ghizeb by 3. P. LZEAVE.

2 . EANSobl, JAMES W., CAVIHESS, JANE SWEARIN, and
JOSEPH, CAMILIA. Analytic Differentiation
by Cunputcr. QBlr. AQ4 5 (June 1962).

3. Private copmamication with D. SHOWALTER,
May 1965.

